The Nucleotide Excision Repair Pathway Limits L1 Retrotransposition

نویسندگان

  • Geraldine Servant
  • Vincent A Streva
  • Rebecca S Derbes
  • Madushani I Wijetunge
  • Marc Neeland
  • Travis B White
  • Victoria P Belancio
  • Astrid M Roy-Engel
  • Prescott L Deininger
چکیده

Long interspersed elements 1 (L1) are active mobile elements that constitute almost 17% of the human genome. They amplify through a "copy-and-paste" mechanism termed retrotransposition, and de novo insertions related to these elements have been reported to cause 0.2% of genetic diseases. Our previous data demonstrated that the endonuclease complex ERCC1-XPF, which cleaves a 3' DNA flap structure, limits L1 retrotransposition. Although the ERCC1-XPF endonuclease participates in several different DNA repair pathways, such as single-strand annealing, or in telomere maintenance, its recruitment to DNA lesions is best characterized in the nucleotide excision repair (NER) pathway. To determine if the NER pathway prevents the insertion of retroelements in the genome, we monitored the retrotransposition efficiencies of engineered L1 elements in NER-deficient cells and in their complemented versions. Core proteins of the NER pathway, XPD and XPA, and the lesion binding protein, XPC, are involved in limiting L1 retrotransposition. In addition, sequence analysis of recovered de novo L1 inserts and their genomic locations in NER-deficient cells demonstrated the presence of abnormally large duplications at the site of insertion, suggesting that NER proteins may also play a role in the normal L1 insertion process. Here, we propose new functions for the NER pathway in the maintenance of genome integrity: limitation of insertional mutations caused by retrotransposons and the prevention of potentially mutagenic large genomic duplications at the site of retrotransposon insertion events.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Endonuclease-independent insertion provides an alternative pathway for L1 retrotransposition in the human genome

LINE-1 elements (L1s) are a family of highly successful retrotransposons comprising approximately 17% of the human genome, the majority of which have inserted through an endonuclease-dependent mechanism termed target-primed reverse transcription. Recent in vitro analyses suggest that in the absence of non-homologous end joining proteins, L1 elements may utilize an alternative, endonuclease-inde...

متن کامل

Similarities between long interspersed element-1 (LINE-1) reverse transcriptase and telomerase.

Long interspersed element-1 (LINE-1 or L1) retrotransposons encode two proteins (ORF1p and ORF2p) that contain activities required for conventional retrotransposition by a mechanism termed target-site primed reverse transcription. Previous experiments in XRCC4 or DNA protein kinase catalytic subunit-deficient CHO cell lines, which are defective for the nonhomologous end-joining DNA repair pathw...

متن کامل

Guardian of the Human Genome: Host Defense Mechanisms against LINE-1 Retrotransposition

Long interspersed element type 1 (LINE-1, L1) is a mobile genetic element comprising about 17% of the human genome, encoding a newly identified ORF0 with unknown function, ORF1p with RNA-binding activity and ORF2p with endonuclease and reverse transcriptase activities required for L1 retrotransposition. L1 utilizes an endonuclease (EN) to insert L1 cDNA into target DNA, which induces DNA double...

متن کامل

Posttranslational inhibition of Ty1 retrotransposition by nucleotide excision repair/transcription factor TFIIH subunits Ssl2p and Rad3p.

rtt4-1 (regulator of Ty transposition) is a cellular mutation that permits a high level of spontaneous Ty1 retrotransposition in Saccharomyces cerevisiae. The RTT4 gene is allelic with SSL2 (RAD25), which encodes a DNA helicase present in basal transcription (TFIIH) and nucleotide excision repair (NER) complexes. The ssl2-rtt (rtt4-1) mutation stimulates Ty1 retrotransposition, but does not alt...

متن کامل

Retrotransposition-Competent Human LINE-1 Induces Apoptosis in Cancer Cells With Intact p53

Retrotransposition of human LINE-1 (L1) element, a major representative non-LTR retrotransposon in the human genome, is known to be a source of insertional mutagenesis. However, nothing is known about effects of L1 retrotransposition on cell growth and differentiation. To investigate the potential for such biological effects and the impact that human L1 retrotransposition has upon cancer cell g...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 205  شماره 

صفحات  -

تاریخ انتشار 2017